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bound is 2.02 for k = 1, and 2.17 for £ = 3. However, for
the range of v under construction and for the given transient
input, the total stress ogs = 0se + o0z at no time exceeds its
instantaneous steady-state value.

The curves for £ = £ in Figs. 5 and 6 also give an indica-
tion of the error involved in neglecting transient effects and
assuming instantaneous steady-state conditions for relatively
thick “thin sections.”

Simple expressions may be obtained for the maximum com-
pressive and tensile stresses in thin sections. Designating &
as a dimensionless thickness, i.e.,

h=1—kF% (60)
and maintaining terms to order A% the transient terms for a
continuous @,(t) are of order A3 or greater and negligible.
The maximum tensile stress at 6 = 0, r = %, as evaluated
from the corresponding steady-state solution of (56) and
(57), is then given by

(=)

and the maximum compressive stress at 6 = 0,7 = 1is given
GaRhQs(t)

by
=)
1—vw K
With A = 0.1 (k = 0.9), the error in (61) and (62) is less than
3.59%, in the steady state for all v.

As previously stated, the form of the heat input over the
back surface of the sphere cannot be considered physically
valid, and the preceding analysis is restricted to an area
around the nose. The boundary conditions (47) and (48)
present an insulated surface at the equatorial plane z = 0,
whereas in actual fact some heat transfer can be expected
to take place across this plane from the forward portion of
the hollow sphere to the rear portion. Also, in applications

G wRohQo(t)
K

1+ (v + 3kl (6D

0'00]7‘=Ic =
=0

oo lr=1 1 — @ —27r] (62)

=0
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to hemispherically capped cylinders and cones capped by a
spherical segment, localized discontinuity stresses may be
present at the junction of the cap and cylinder or cone. The
preceding results, however, should be quite representative
of the actual stresses in the aerodynamically heated thick-
walled sphere or hemisphere in the region 0 < ¢ < 7/3.
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Buckling of Cylindrical Shells under Dynamic Loads
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The results of an exploratory experimental and analytical program on the buckling (collapse)

of thin-walled cylindrical shells under dynamic loads are presented and discussed.

Loading

conditions for the cylindersinclude dead-weight axial compression with axisymmetrie transient
and oscillatory hydrostatic pressures. Where possible, the experimental results are qualitatively

verified by linear shell theory.
identified.

I. Introduction

N missile and space vehicle design there is an ever-increas-
ing number of cases in which shell structures are subjected
to dynamic loads. One common loading condition for
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ment, suggestions, and assistance throughout the program, and
to J. P. O’Neill, R. F. Wells, and D. A. Evensen of Space Tech-
nology Laboratories for their direction and performance of the
experiments.

* Vice President; formerly Associate Manager, Dynamics
Department, Engineering Mechanics Laboratory, Space Tech-
nology Laboratories Inc., Redondo Beach, Calif.

T Member of the Technical Staff.



NOVEMBER 1963

Recently, it has been recognized that random pressure
fluctuations of considerable magnitude are generated around
missile structures during transonic and low supersonic
speeds, as shown by recent wind tunnel tests.} It has been
shown that this phenomenon, called buffeting, was a critical
loading condition on recent space probes and on the Mer-
cury vehicle; however, because of the lack of data and
knowledge, the existence of “dynamic buckling” (collapse§)
for the shell structures in these cases was not considered.
Other situations where shells are under large axial compres-
sion and lateral dynamic loads oceur during missile silo launch
and during nuclear attacks on re-entry vehicles outside of
the atmosphere (x-ray ablation).

Although a number of studies of dynamic buckling have
been made, a large portion of this work has been concerned
with column and plate behavior. Cylinders have been
treated to some extent chiefly by Russian investigators.2—1
Problems of the stability under parametric resonance were
discussed in Refs. 6, 12, 13, and 18. To the authors’ knowl-
edge, the present problem has not been discussed.

This paper presents some of the experimental and theo-
retical results of an exploratory program on the stability of
cylindrical shells subject to dynamie loads. The primary
purpose of the program was to investigate in a limited time
the nature of buckling in thin-walled cylindrical shells that
are subjected to sustained axial compression and rapidly
varying normal pressures. Other details of the program, such
as loading conditions of axisymmetric and asymmetric im-
pulsive and asymmetric stepwise pressures, and the many
facets of the experimental techniques and apparatus, are
givenin Ref. 1.

II. Test Specimens and Equipment

All test specimens used in this program are right circular
cylinders with the following geometric characteristics:
length (L) = 8 in., radius (R) = 4 in., and thickness (k) =
0.005 and 0.0075 in. The specimens were constructed of
type A Dupont “Mylar” Polyester film. The details of their
fabrication may be found in Ref. 1. Mylar is attractive for
investigations of this kind because it can withstand large
amounts of strain without excessive permanent set, thereby
permitting repetitive tests of each specimen.

Several possible methods of producing rapid external pres-
sure engulfment of a cylindrical specimen were considered,
such as small explosive charges near the specimen, cylindrical
sheets of explosive wrapped around the specimen, an array
of quick-opening valves admitting pressurized air to a cham-
ber around the specimen, or mounting the specimen inside
a shock tube. All of these methods presented difficult pres-
sure control problems or difficulty in observing the specimen
under test. It was therefore decided to study means of evacu-
ating the interior of the specimen.

The technique finally selected produces the pressure differ-
ential by means of an electromagnetically driven piston con-
nected to the interior of the specimen (see Figs. 1 and 2 for
photos and a schematic of the apparatus). Motion of the
piston produces a negative pressure in the interior of the
specimen, and, with atmospheric pressure acting on the
exterior, a uniform inward force over the surface of the speci-
men is produced.

The driver is made from a loudspeaker magnet assembly,
and the piston is a modified lightweight loudspeaker cone
assembly incorporating a special edge support that allows
an unusually long stroke for the cone piston.

I NASA, Ames Research Center, Moffett Field, Calif., wind
tunnel tests on Advent and Atlas-Able-5 configurations; AEDC,
16 ft PWT tests on the Mercury vehicle.

§ Throughout this paper the word “buckling’’ is synonymous
with “collapse.” Unbounded response in such a dynamic re-
sponse problem results in collapse.
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Fig.1 Test set-up and apparatus.
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Fig. 2 Schematic of apparatus.

HI. Loading Conditions and Results

A. Dead-Weight Axial Load and Stepwise Axisymmetric
Hydrostatic Pressures

1. Procedure

In this test a clamped cylinder was loaded with dead
weights at one end (see Figs. 1 and 2) and was then subjected
to a stepwise axisymmetric hydrostatic pressure.

Considerable effort was expended in developing a technique
for programming a pressure differential that was effectively
a step function in time. By using the electromagnetically
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Fig. 3 Typical ramp-step pressure record.

driven piston described previously, the step function had the
following characteristics: rise time, approximately 3 msec;
overshoot, less than 5%, of the total amplitude; duration of
the pulse (defined as the time required for the amplitude of
_the pressure to drop 5%), 60 msec as compared to 8 msec,
which is the usual collapse time. Figure 3 gives the details
of a typical pressure record of the step function which was
obtained with the apparatus shown in Figs. 1 and 2.

The following procedure was used to obtain a comparison
of the specimen response due to static loads and stepwise
dynamie loads. The desired axial load was applied by placing
circular steel weights on the upper cap. A slowly increasing
differential pressure was then applied to the specimen by
means of a vacuum pump until collapse occurred. Collapse
of the specimen, in the static and dynamic tests, was char-
acterized by large buckle patterns and an inability to support
axial load. After the specimen had been restored to the
stable condition with zero pressure differential and the axial
Joad was replaced, a series of pressure steps was applied.
The amplitude of these steps was increased in increments
until collapse of the specimen occurred. In this manner the
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Fig. 4 Collapse load interaction curve for a Mylar cylinder
under a ramp-step pressure; h = 0.005 in.
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maximum pulse that could be applied without collapsing the
specimen was determined. This procedure was repeated
for several values of axial load. The data from these tests are
plotted in Figs. 4 and 5.

2. Results

The application of a stepwise axisymmetric hydrostatic
pressure to the cylinder did not produce collapse at a value
significantly different from that found when the pressure was
applied statically. Since a rise time of approximately 3
msec seemed to be a minimum with the present apparatus
and no degradation in the load-carrying ability of the shell
was detected, longer rise times were not investigated.

The results of these tests are verified with linear shell
theory, as discussed later. However, it is hypothesized that
nonlinear theory, which can account for the interaction or
exchange of energy between the extensional and inextensional
modes, may show that the load-carrying ability of the shell
as compared with static loading can be different if the pres-
sure is applied rapidly enough to excite the extensional mode.
In this study, the 3-msec rise time of the step is not short
enough to excite the extensional mode (frequency of approxi-
mately 3000 cps) for the Mylar cylinder. .In future studies,
an attempt will be made to rectify this deficiency.

B. Dead-Weight Axial Load and Sinusoidal Axisymmetric
Hydrostatic Pressures

1. Procedure

In most cases for this loading condition, the differential
pressure on the cylinder fluctuated above and below at-
mospheric; however, it was also possible to apply a constant
axisymmetric pressure by means of a vacuum pump and
superimpose sinusoidal pressures. These pressures were
measured by a transducer and recorded on an oscilloscope.

As before, the testing procedure consisted of two main
parts: 1) static collapse tests, and 2) dynamic collapse tests.
The first test of the cylinder determined the collapse load
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Fig.5 Collapseload interaction curve for a Mylar cylinder
under a ramp-step pressure, h = 0.0075 in.
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Py under static axial compression. Several runs with “rest”
periods between each were made to determine this load ac-
curately. Following this test, the static buckling pressure
for an end load P was determined and used for comparison
with the results of the dynamic tests (see Figs. 6 and 7).
Dynamic collapse tests were conducted by selecting a
desired frequency and then increasing the amplitude of the
pressure fluctuation until collapse occurred. The internal
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Fig. 8 Stability diagram for Mathieu’s equation.

pressure oscillated above and below atmospheric pressure,
and the half amplitude (maximum negative value) of the
differential pressure across the shell when collapse occurred
was recorded as the “dynamic collapse pressure.” Care
was taken to measure this amplitude when the internal
pressure was below atmospherie, i.e., when the cylinder was
subjected to a differential pressure tending to collapse rather
than stabilize it.

2. Results

Two different cylinders were tested with the same B/h ratios
but with different values of the collapse load P,. One
cylinder was tested in the frequency range 20 to 600 cps, and
the second cylinder was tested in the frequency range 20 to
100 c¢ps. The results of these tests are presented in Figs. 6
and 7.

The experimental results indicate that the pressure ampli-
tude necessary to cause collapse can vary significantly with
the driving frequency. For the cylinders tested, the pres-
sure amplitude necessary to cause collapse varied from 90
to 3509, of the static collapse pressure, depending upon the
frequency.

As the driving frequencies increase, the collapse pressures
also increase as shown in Fig. 7; such results agree with
intuition. However, based on the variations found between
20 and 100 cps, it is felt that more data are needed to outline
the results at the higher frequencies.

Using linear theory, as shown later, the response and sta-
bility of the shell are characterized by a Mathieu equation
(see Tig. 8). Qualitatively, the predictions of this theory
are borne out by the experiments.

Some experiments were conducted with a sinusoidal pres-
sure acting simultaneously with a constant pressure. The
latter is less than the static collapse pressure, and, in general,
the results showed trends similar to those when the constant
pressure is zero (see Fig. 9). However, Lubkin and Stoker!t
have shown for columns that it is possible to apply a con-
stant load that is larger than the critical buckling value and
still be stable, providing the total load (i.e., constant plus
oscillatory) falls below the critical value during part of the
cycle. Investigations such as this, for shells, are planned
for the future.

IV. Analysis

A. Formulation of the Problem

A qualitative explanation for some of the experimental
results can be obtained from an analysis employing linear
shell theory. Since the stability phenomenon is essentially
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one of buckling under axial load, attention is focused on the
stability of the breathing modes into which the shell will
buckle.

In the following, Donnell’s theory'® will be used so that
the radial deformation is given by the solution to

di(w — wr) _
ozt

— O  — O Q%w
4 it i odl TN
\Y (N‘w + Ng e 0% btz) 0 1

Vi (w — wy) + (1 — »%)

where

w = radial component of total deformation, positive

inward

w, = initial deformation from circular cross-section

z,¢ = nondimensionalized coordinates

B = mean shell radius

v = Poisson’s ratio

B o= R/12R%y = [p(1 = WR/E

N. = N1 — »))/Eh, Ny = [N*(1 — v*)]/Eh
in which

v* = [(0%/0z?) + (0%/0¢7)]*

VS = V4(v4)

h = shell thickness

) = density

E = Young’s modulus

N.°Ng4® = initial shell stress resultants

Equation (1) has been nondimensionalized with respect to
the shell radius, and the initially deformed state has been
treated in the manner of Timoshenko.’® For the sake of
simplicity, only radial inertia has been included, this being
the principle inertial response.

For a shell subjected to a constant axial load P and an
external hydrostatic pressure ¢(f), the initial membrane loads
can be computed by assuming the cylinder to remain circular
and undergo & uniform compression circumferentially so that

N,* = —(P/27R) — iRq(t)
@
Ng® = —Rq(t)
For simplicity, the shell is assumed freely supported, and a
solution is sought in the form

@

w(z,@,t) = i . Funl®) sinBnx cosne 3)

n=1m

where fnn(t) is the generalized coordinate of the m,nth mode,
Bm = mz/l, 1 = L/R, and L = shell length. In the same
spirit, the initially deformed state is described by

o

@) = 3 D) fue' sinBuz cosng @
1

n=1lm=

Substituting Eqs. (2-4) into (1) and simplifying, one ob-
tains for the generalized coordinate the equation

d2fmn BLZ B’”"cr - P _ —1_ _ﬁ ] B
dt? th l: 2w R? <2 + Bm2> Q(t) fmn =

Bun’Prunerfmn’

2w phR3 ®)
where
_ 2xRAE [ k(Bn2+ n?)? Bnt
Ponge = B |: 1 — p2 + (Bn?® 4 n2)2]

is the critical axial buckling load for the m, nth mode in the
absence of external pressure. The solution to the dynamic
stability problem is thus reduced to the solution of (5) for
a given pressure ¢(t). Except where noted, instability is
assumed synonomous with an unbounded displacement.
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constant pressure applied to a Mylar cylinder.
B. Ramp and Step Pressures

We consider in detail the case of a very rapidly applied
pressure and mathematically represent it by

) = aH®) O

where H (f) is the Heaviside unit step function. Substituting
(6) into (5),

(@Y mn/dt?) + [A — BH®)Ifmn = Cfon’ )

A= B <M
phR 2w R*
_ ﬂmz 1 n2
B Lt gh)e
_ Bmszncr
2w phR?

fmn(o) = fun'

Equation (7) is easily solved using Laplace transforms. The
transform of (7) is

where

Cf ma’
sls* + (4 — B)]

_ Fn!
FO =mrua—m*

where s is the transform variable. The required solution is
obtained by inverting (8), for which three cases exist.

®)

1. Subcritical pressure, B < A
For this case, the inverse of (11) is
Fonl®) = (Fun' /o) [50 0ot + C(1 = cOSwma)]  (9)
where

—4_po LB tn) Bt
wne? = A — B = pRz[k i T

B.P (B, ,
2w R? 2 e
The resulting motion is a pure oscillation about the initially

deformed state at the modal natural frequency. There is
no evidence of instability.

2. Critical pressure, B = A

In this case, the pressure is given by

-7) o

3 3 1 (Pm,,e,
B= e T W (n¥/Ba0]1\ 2R
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and is the value required to induce buckling under static
conditions. The solution is

Fun(®) = fua' (¢ + 3CE) (11

and is clearly unbounded, with deflection increasing para-
bolically with time.

3. Supercritical pressure, B > A

Letting
Bn2 [(1  m2 P, — P:l
2 — = Em -l A — —Mher %
@=B-4="R [(2 + 5,,,2> @ 2wR?
then
Fon(l) = le—'; [sinhat + C(1 — coshat)] (12)

It is clear that the cylinder will buckle, since the response is-

unbounded.

4. Comments and discussion

Linear theory predicts no decrease in the critical pressure,
even when it is quite suddenly applied. This result is pri-
marily due to the “quasi-static” nature of Eq. (2). The
primary response to the dynamic pressure is a ‘“ring mode”
in which the radial deformation can be assumed to be uni-
form and vary only with time. A corresponding free-body
diagram of a shell element is shown in Fig. 10. The radial
equation of motion is

Ny = phB(d™wo/dt*) + Rq(t) (13)
The stress-strain and strain-displacement relations yield
N¢° = O’¢°h = '“Eh(ZUo/R) (14:)
Upon eliminating we between (13) and (14), the result is
EN® B o, —F
kLl X O (15)

For the ramp pressure given by (see Fig. 11)
gt) = (@/B)EHE) = ¢ — &)H{E — #)]

we obtain
Ny = —aR (-t - sm‘“‘“) 0<t<t (16)
t1 thl
= —qR[1 + 5 cos(wat + ¢)] t>
where
_ sin(wéy/ Tr)
(wt/Tr)
Tr = 27/ wz we = (1/R)[E/p]¥*

In the limit £, — 0, 7 — 1, and the hoop stress corresponding
to a step pressure becomes

Ng® = —qR(l — coswgl) (16a)

which is the case previously considered.

q ()

Fig. 10 Differential ele- Y ‘ /; \
ment of shell for ring N¢° AN Wo / N ¢°
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Equations (16) and (16a) indicate that for a rise time # >
Tr, where Tr is the natural period of the ring mode, N4°
is essentially its quasi-static value given by (2). The
computation of Ng° by (2) thus implies a large rise time,
and it is therefore not surprising that the preceding
theory does not predict a degradation in ecritical pressure.
However, (16) implies that a very short rise time can pro-
duce a maximum N, that is larger than its quasi-static
value given by (2). A degradation in critical pressure may
thus be possible if the rise time is short enough.

Equation (16) also explains the possible failure to detect
degradation in the experimental work. For the Mylar test
cylinders,

wr = (1/R)[E/p]H? ~ 3000 cps

so that Tz = % msec, but the fastest rise time obtainable
experimentally was ¢, = 3 msec.

For a better understanding of the coupling between the
extensional and the breathing modes, a nonlinear analysis is
required. Such a study has already been started, and pre-
liminary results indicate that the critical pressure can be
less if the rise time is short enough to excite the ring mode.
Upon completion of this study, a detailed accounting of the
results will be given in a later paper.

C. Sinusoidal Pressure

When ¢(f) is given by
9(®) = ¢ + q cosat 17
then the solution to (18) becomes
N = B~ e = (9
If ¢ K 1/R[E/p]Y% = wg, then Eq. (18) becomes
Ny =2 —R(q0 + ¢ cosat) 19)

For the Mylar test cylinders, wz = 3000 cps, and this condi-
tion was certainly satisfied in the tests.

In addition to the axisymmetric radial motion, breathing
modes are excited. Using (19) for (2) and then substituting
into (5) and simplifying yields (initial imperfections are as-
sumed negligible)

(@ mn/ A + @mu?(1 — €mn COST)fmn = 0 (20)

where

[% -+ (n2/6m2) ]Q1
[(Prnes — P)/27R] — [3 + (n2/8,9] %

is a “load factor” giving the ratio of the amplitude of the
sinusoidal component of pressure to the corresponding amount
that can be applied statically. A load factor of emn = 1 cor-
responds to a cylinder that would be critically loaded under
static conditions. Questions of considerable technical in-
terest are: 1) Can the cylinder response be unstable when
eémn < 1?7 2) Can the cylinder response be stable when
€mn > 1?7 The answer lies in the equation

(d*ma/dr?) + (@ — 2Q cos27)f = 0 @n

€mn =
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1 Fig. 12 Stability re-
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which is the standard form of Mathieu’s equation for which
T = ot/2
Q = (enn/2)(4wma?/a?)

Figure 8 shows the usual stability diagram associated with
Eq. (21) showing the values of (a,Q) for which motion is
stable or unstable. ‘““Load lines” are drawn to facilitate the
location of various loading conditions. From Fig. 8, the
following conclusions can be drawn:

1) For enn < 1, the motion is essentially stable, but some
unstable regions are present indicating that, for proper com-
binations of ¢; and ¢, a suberitical sinusoidal pressure can
induce ‘“‘premature” buckling.

2) For €mn > 1, the motion is generally unstable, but there
are stable regions in which a supercritical ¢; can be applied
without inducing buckling. This has been observed experi-
mentally.

3) For ¢ high enough, the motion is always stable re-
gardless of €mn. This agrees with intuition, for it repre-
sents the condition in which the pressure is applied and re-
moved too rapidly for the shell to respond.

These predictions were qualitatively verified experi-
mentally.

When @ is small, simple equations for the boundaries be-
tween stable and unstable regions can be written and critical
frequencies determined for a given load factor em.. The
regions of instability have been determined to be

¢ = 4@n,2/ o2

2Wmn
[1 4 (e/2) + (7/32)e* + (39/512)63]1/2 o<
2Wmn
[1 — (¢/2) 4+ (7/32)e? — (39/512)¢2]1/2 (22)

20mald + §€2] V2 < ¢ < 20mald — Re2] U2

Other regions are very narrow and occur at

0/2Wmn = %53, ...
but some damping is always present and will eliminate these
regions.’? Equations (22) are in agreement with similar
results given by Oniashvili® except for a minor disagreement
in the coefficient of the € terms. The principal unstable
region appears to be at 3 of the exciting frequency. This
tendency was detected experimentally, but a detailed quan-
titative correlation was not possible. In the experiment
with the step loading, the mode into which the shell finally
buckled had a natural frequency of 1350 cps, which is close
to one-half of the ring mode frequency of 3000 cps. This
tends to lend support to the results of Mathieu’s equation,
but it is by no means conclusive.
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The solution of (21) given by Fig. 8 and by Eq. (22) im-
plies that instability can result for any small value of e, if
o falls in the unstable region. This paradoxical conclusion
disappears when damping is included in the analysis. This
is discussed by Lubkin and Stoker.!* The work of Russian
writers in this area is discussed by Beilin and Dzhanelidze,
who have shown that damping contracts the region of in-
stability and shifts the higher regions to the right as shown
in Fig. 12. Thus, it may be inferred that loss of dynamic
stability is practically possible only for €., larger than cer-
tain minimum values, which depend upon the damping and
the exciting frequency.
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